593 research outputs found

    Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    Get PDF
    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals

    Please don\u2019t! The automatic extrapolation of dangerous intentions

    Get PDF
    Facial emotions and emotional body postures can easily grab attention in social communication. In the context of faces, gaze has been shown as an important cue for orienting attention, but less is known for other important body parts such as hands. In the present study we investigated whether hands may orient attention due to the emotional features they convey. By implying motion in static photographs of hands, we aimed at furnishing observers with information about the intention to act and at testing if this interacted with the hand automatic coding. In this study, we compared neutral and frontal hands to emotionally threatening hands, rotated along their radial-ulnar axes in a Sidedness task (a Simon-like task based on automatic access to body representation). Results showed a Sidedness effect for both the palm and the back views with either neutral and emotional hands. More important, no difference was found between the two views for neutral hands, but it emerged in the case of the emotional hands: faster reaction times were found for the palm than the back view. The difference was ascribed to palm views\u2019 \u201coffensive\u201d pose: a source of threat that might have raised participants' arousal. This hypothesis was also supported by conscious evaluations of the dimensions of valence (pleasant-unpleasant) and arousal. Results are discussed in light of emotional feature coding

    Functional infrared imaging of paroxysmal ischemic events in patients with Raynaud's phenomenon.

    Get PDF
    The use of thermal infrared (IR) imaging together with the study of the thermal recovery from a controlled cold challenge has been proposed in the diagnosis and follow-up of therapeutic response of Raynaud's Phenomenon (RP) and Systemic Sclerosis (SSc). The controlled cold challenge test usually performed during IR investigations may induce a RP in patients with the latter condition. In our Institution we routinely perform capillaroscopy and thermal IR to follow-up SSc patients. In this paper, we describe the thermal recovery patterns shown by two SSc patients (a 40 year-old male with diffuse variant of SSc and a 71 year-old female with a limited variant of SSc) who presented ischemic and paroxysmal RP attack while recovering from the routine controlled cold challenge test. During RP attack, the cutaneous temperature of some fingers continued to decrease for some minutes even after the cessation of the cold stress. To the best of our knowledge, to date, no literature report has documented the thermal behaviour of SSc patients' fingers which occasionally present ischemic and paroxysmal response. Triggering of ischemic RP attack appears to not rely only on morphological and structural finger impairment, but also upon other aspects, like the emotional attitude of the subject and the possible discomfort experienced with the proceeding of the functional cold stress test

    The use of infrared thermography to detect the skin temperature response to physical activity

    Get PDF
    Physical activity has a noticeable effect on skin blood flow and temperature. The thermal regulatory and hemodynamic processes during physical activity are controlled by two conflicting mechanisms: the skin vasoconstriction induced by the blood flow demand to active muscles and the skin vasodilation required by thermoregulation to increase warm blood flow and heat conduction to the skin. The time-evolution of skin temperature during exercise can give useful information about the adaptation of the subject as a function of specific type, intensity and duration of exercise. In this paper, infrared thermography is used to investigate the thermal response of skin temperature during running exercise on treadmill for a group of seven healthy and trained runners. Two different treadmill exercises are considered: a graded load exercise and a constant load exercise; for both exercises the duration was 30 minutes. Within the limits due to the relatively small size of the sample group, results typically indicate a fall in skin temperature during the initial stage of running exercise. As the exercise progresses, the dynamics of the skin temperature response depends on the type of exercise (graded versus constant load) and probably on the level of training of the subject

    COVID-19 Accelerated Cognitive Decline in Elderly Patients with Pre-Existing Dementia Followed up in an Outpatient Memory Care Facility

    Get PDF
    Introduction: Coronavirus disease 2019 (COVID-19) may affect the cognitive function and activities of daily living (ADL) of elderly patients. This study aimed to establish the COVID-19 effect on cognitive decline and the velocity of cognitive function and ADL changes in elderly patients with dementia followed up in an outpatient memory care facility. Methods: In total, 111 consecutive patients (age 82 ± 5 years, 32% males) with a baseline visit before infection were divided into those who had or did not have COVID-19. Cognitive decline was defined as a five-point loss of Mini-Mental State Examination (MMSE) score and ADL comprising basic and instrumental ADL indexes (BADL and IADL, respectively). COVID-19 effect on cognitive decline was weighted for confounding variables by the propensity score, whereas the effect on change in the MMSE score and ADL indexes was analyzed using multivariate mixed-effect linear regression. Results: COVID-19 occurred in 31 patients and a cognitive decline in 44. Cognitive decline was about three and a half times more frequent in patients who had COVID-19 (weighted hazard ratio 3.56, 95% confidence interval 1.50–8.59, p = 0.004). The MMSE score lowered on average by 1.7 points/year, independently of COVID-19, but it lowered twice faster in those who had COVID-19 (3.3 vs. 1.7 points/year, respectively, p < 0.050). BADL and IADL indexes lowered on average less than 1 point/year, independently of COVID-19 occurrence. Patients who had COVID-19 had a higher incidence of new institutionalization than those who did not have the disease (45% versus 20%, p = 0.016, respectively). Conclusions: COVID-19 had a significant impact on cognitive decline and accelerated MMSE reduction in elderly patients with dementia

    Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks

    Get PDF
    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks

    A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.

    Get PDF
    Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is possible and that the present method can provide a novel solution to analyse real-world fNIRS data, filling the gap between real-life testing and functional neuroimaging

    Juvenile moyamoya and craniosynostosis in a child with deletion 1p32p31: Expanding the clinical spectrum of 1p32p31 deletion syndrome and a review of the literature

    Get PDF
    Moyamoya angiopathy (MA) is a rare cerebrovascular disorder characterised by the progressive occlusion of the internal carotid artery. Its aetiology is uncertain, but a genetic background seems likely, given the high MA familial rate. To investigate the aetiology of craniosynostosis and juvenile moyamoya in a 14-year-old male patient, we performed an array-comparative genomic hybridisation revealing a de novo interstitial deletion of 8.5 Mb in chromosome region 1p32p31. The deletion involved 34 protein coding genes, including NF1A, whose haploinsufficiency is indicated as being mainly responsible for the 1p32-p31 chromosome deletion syndrome phenotype (OMIM 613735). Our patient also has a deleted FOXD3 of the FOX gene family of transcription factors, which plays an important role in neural crest cell growth and differentiation. As the murine FOXD3-/- model shows craniofacial anomalies and abnormal common carotid artery morphology, it can be hypothesised that FOXD3 is involved in the pathogenesis of the craniofacial and vascular defects observed in our patient. In support of our assumption, we found in the literature another patient with a syndromic form of MA who had a deletion involving another FOX gene (FOXC1). In addition to describing the clinical history of our patient, we have reviewed all of the available literature concerning other patients with a 1p32p31 deletion, including cases from the Decipher database, and we have also reviewed the genetic disorders associated with MA, which is a useful guide for the diagnosis of syndromic form of MA

    Warping-based co-registration of thermal infrared images: Study of factors influencing its applicability

    Get PDF
    A relevant issue for processing biomedical thermal imaging data is the availability of tools for objective and quantitative comparison of images across different conditions or subjects. To this goal, a solution can be offered by projecting the thermal distribution data onto a fictitious template to obtain a common reference for comparison across cases or subjects. In this preliminary study, we tested the feasibility of applying a warping procedure on infrared thermal images. Fifteen thermal images of checkerboard were recorded at three different distances and five different angles in order to evaluate which factor mostly influences the warping accuracy. The accuracy of three different warping transformation models (local weighted mean (LWM), polynomial, affine) was tested by comparing the positioning error between users’ selected fiduciary points on each thermal image and their corresponding reference position assigned on the template image. Fifteen users, divided into three groups upon on their experience in thermal imaging processing, participated in this study in order to evaluate the effect of experience in applying a warping procedure to the analysis of thermal infrared images. The most relevant factor influencing the positioning and thermal errors is the acquisition distance, while the users’ level of experience and the inclination angle do not seem to play the same importance. Comparing the three transformations, the LWM seems to be the best in terms of minimizing the two categories of errors. This preliminary work helps to understand the limits and the possibilities of applying warping techniques for objective, quantitative and automatic thermal image comparisons
    • …
    corecore